GENERAL MATERIAL PROPERTIES Reference

Material

INTRODUCTION

Color

Relative

Mir No.	Pe	ermeability (μ _γ)	Density (g/cm³)			Cost			Code					
-2	ii	10	5.0				2.7			Gray				
-8		35		6.5				5	.0		(Gray/White		
-18		55		6.6			3				(Green		
-26	75			7.0			1		.0		Yellow/White			
-28	22		6.0			1		1.	.9		(Gray/Green		
-33	33		6.3					1.	1.6		Gray/Yellow			
-38	85		7.1			1		1	.1			White/Green		
-40	60		6.9					1	1.0		Green/Yellow			
-52	75		7.0				1.4			341	Green/Blue			
CORE LOSS CO	MPARISO	N (mW/cn	n³)*					9	PERM	IEABIL	ITY W	ITH D	C BIA	
Material	60 Hz 1kHz		10kHz	50kHz		100kHz	500kHz		HDC = 50		0 oerst	oersteds		
Mix No.	@5000G	@5000G @1500G		@225G	@140G		@50G		%µ₀		μ effective			
-2	19**	19** 32**		28	19		12		100		10.0			
-8	45	64	59	50		36	28		91		31.9			
-18	48	72	71	63		46	37		74			40.7		
-26	33	60	75	89		83	139		51		38.3			
-28	38	80	120	164	164 158		247		91			20.0		
-33	37	80	126	182		180	291		84			27.7		
-38	31	57	72	99	103		217		51		43.4			
-40	29	62	93	130		127	224		62		37.2			
* Revised ** Low fre	30 d from previ equency core	56 ious issues d loss is extra	68 lue to refir polated fro	72 ned analys om data m	sis d	58 of data. ured at hig	63 gh freque	ency.	59			44.3		
MATERIAL APPL		5									-			
Typical Applicat				-2	-8	-18	-26	-28	-33	-38	-40	-52		
Light Dimmer Chokes							Χ			Χ	X			
60 Hz Differential-mode EMI Line Chokes							X			X	X	X		
DC Chokes: <50kHz or low Et/N DC Chokes: ≥50kHz or higher Et/N					37		Χ	X	Χ	X	Χ			
Power Factor Correction Chokes: <50kHz					X	X		V	· · ·		V	X		
Power Factor Correction Chokès: <50kHz						٧.	Χ	X	X		Χ	V	-	
Resonant Induct			JKI IZ	X	X	X						X		
MATERIAL DESC -2 Material The will result in low with other mater	low perm ver operation	eability of ng AC flux	density	than		Ma	iterial fo	or appl	ication	s wher	e high t	nate to frequen h high l	су со	
-8 Material This national linearity under hardened material	high bias c	conditions.	A good			Ma	Material.	rial A I A low	nigher / cost	oermea materi	bility a al best	alternate t used	to - at li	

frequency.

choke designs.

-40 Material The least expensive material. It has

characteristics quite similar to the very popular -26

-52 Material This material has lower core loss at

high freugency and the same permeability as the

-26 Material. It is very popular for high frequency

Material. Popular in large sizes.

Material

- frequency material. The highest cost material.

- -18 Material This material has low core loss similar
- to the -8 Material with higher permeability and a
- lower cost. Good DC saturation characteristics.

- -26 Material The most popular material. It is a cost-

- effective general purpose material that is useful in a wide variety of power conversion and line filter applications.
- - -28 Material The good linearity, low cost, and relatively low permeability of this material make it popular in large sizes for high power UPS chokes.